Ти тут

Площа рівностороннього трикутника

Серед геометричних фігур, які розглядаються в розділі геометрія, найбільш часто доводиться стикатися при вирішенні тих чи інших завдань з трикутником. Він являє собою геометричну фігуру, утворену трьома прямими. Вони в одній точці не перетинаються і не є паралельними. Можна дати інше визначення: трикутник є ламаною замкнуту лінію, що складається із трьох ланок, де її початок і кінець з`єднуються в одній точці. Якщо всі три сторони мають рівну величину, то це правильний трикутник, або, як кажуть, рівносторонній.

Як же визначити площа рівностороннього трикутника? Для вирішення подібних завдань необхідно знати деякі властивості цієї геометричної фігури. По-перше, у даного виду трикутника всі кути рівні. По-друге, висота, яка опускається з вершини на підставу, є одночасно і медіаною, і висотою. Це говорить про те, що висота ділить вершину трикутника на два рівних кута, а протилежну сторону - на два рівних відрізка. Так як рівносторонній трикутник складається з двох прямокутних трикутників, то при визначенні шуканої величини необхідно використовувати теореми Піфагора.

Відео: Площа рівностороннього трикутника

Розрахунок площі трикутника можна зробити різними способами, в залежності від відомих величин.

1. Розглянемо рівносторонній трикутник з відомими стороною b і висотою h. Площа трикутника в цьому випадку буде дорівнює одній другій твори боку і висоти. У вигляді формули це буде виглядати так:

S = 1/2 * h * b

Говорячи словами, площа рівностороннього трикутника дорівнює одній другій врожаю його боку і висоти.

2. Якщо відома тільки величина боку, то перш, ніж шукати площа, необхідно обчислити його висоту. Для цього розглянемо половину трикутника, в якому висота буде одним з катетів, гіпотенуза - це сторона трикутника, а другий катет - половина боку трикутника згідно його властивостями. Все з тієї ж теореми Піфагора визначимо висоту трикутника. Як з неї відомо, квадрат гіпотенузи відповідає сумі квадратів катетів. Якщо розглядати половину трикутника, то в даному випадку сторона є гіпотенузою, половина боку - одним катетом, а висота - другим.



(B / 2) + h2 = b , звідси

h = b - (b / 2) . Наведемо до спільного знаменника:

h = 3b / 4,

h = &radic-3b / 4,



h = b / 2&radic-3.

Як бачимо, висота розглянутої фігури дорівнює добутку половини його боку і кореня з трьох.

Підставами в формулу і побачимо: S = 1/2 * b * b / 2&radic-3 = b / 4&radic-3.

Відео: Площа рівностороннього трикутника

Тобто, площа рівностороннього трикутника дорівнює добутку четвертої частини квадрата сторони і кореня з трьох.

3. Є і такі завдання, де необхідно визначити площу рівностороннього трикутника при відомій висоті. І це виявляється простіше простого. Ми вже вивели в попередньому випадку, що h = 3 b / 4. Далі необхідно звідси вивести сторону і підставити в формулу площі. Виглядати це буде так:

Відео: ЗНО. Рівносторонній трикутник

b = 4/3 * h , звідси b = 2h /&radic-3. Підставивши в формулу, по якій знаходиться площа, отримаємо:

S = 1/2 * h * 2h /&radic-3, звідси S = h /&radic-3.

Мають місце завдання, коли необхідно знайти площу рівностороннього трикутника по радіусу вписаного або описаного кола. Для цього розрахунку також є певні формули, які виглядають наступним чином: r = &radic-3 * b / 6, R =&radic-3 * b / 3.

Діємо вже по знайомому нам принципом. При відомому радіусі, виводимо з формули сторону і обчислюємо її, підставивши відому величину радіуса. Отримане значення підставляємо в уже відому формулу для розрахунку площі правильного трикутника, проводимо арифметичні обчислення і знаходимо шукану величину.

Як бачимо, для того, щоб вирішити аналогічні завдання, необхідно знати не тільки властивості правильного трикутника, а й теореми Піфагора, і радіус описаної і вписаного кола. Для володіють цими знаннями рішення подібних завдань не буде представляти особливих труднощів.

Поділися в соц мережах:

Увага, тільки СЬОГОДНІ!

Схожі повідомлення


Увага, тільки СЬОГОДНІ!