Ти тут

Закони алгебри логіки

Сучасні комп`ютери, засновані на «древніх» електронно-обчислювальних машинах, в якості базових принципів роботи спираються на певні постулати. Вони називаються закони алгебри логіки. Вперше подібна дисципліна була описана (звичайно, не настільки детально, як в сучасному вигляді) давньогрецьким вченим Арістотелем.

Представляючи собою окремий розділ математики, в рамках якого вивчається числення висловів, алгебра логіки має ряд чітко вибудуваних висновків.

З тим щоб краще розібратися в темі, розберемо поняття, які допоможуть надалі дізнатися закони алгебри логіки.

Відео: Алгебра логіки: Закони алгебри логіки. Центр онлайн-навчання «Фоксфорд»

Мабуть, основний термін в досліджуваної дисципліни - висловлювання. Це таке собі твердження, яке не може бути одночасно хибним і істинним. Йому завжди властива лише одна з цих характеристик. При цьому умовно прийнято істинності надавати значення 1, хибності - 0, а сам вислів називати якоїсь латинською буквою: A, B, C. Інакше кажучи, формула A = 1 означає, що висловлювання А істинно. З висловлюваннями можна поступати самим різним чином. Коротенько розглянемо ті дії, які можна із ними робити. Відзначимо також, що закони алгебри логіки неможливе засвоїти, не знаючи цих правил.

1. Диз`юнкція двох висловлювань - результат операції «або». Може бути або помилковою, або істинною. Використовується символ «v».

2. Кон`юнкція. Результатом подібної дії, що здійснюється з двома висловлюваннями, стане нове висловлення, щире лише в разі, коли обидва вихідних висловлювання істинними. Використовується операція «і», символ «^».

3. Імплікація. Операція «якщо А, то В». Результатом є висловлювання, помилкове лише в разі істинності А і хибності В. Застосовується символ «-gt;».

4. еквіваленцію. Операція «A тоді і тільки тоді В, коли». Цей вислів істинно у випадках, коли обидві змінні мають однакові оцінки. Використовується символ "lt; -gt;».



Існує також ряд операцій, близьких до імплікації, але в даній статті вони розглянуті не будуть.

Тепер докладно розглянемо основні закони алгебри логіки:

1. комутативну або переместітельний говорить, що зміна місць логічних доданків в операціях кон`юнкції або диз`юнкції на результаті не позначається.

2. асоціативної або асоціативний. Згідно з цим законом, змінні в операціях кон`юнкції або диз`юнкції можна об`єднувати в групи.



3. Розподільчий або дистрибутивний. Суть закону в тому, що однакові змінні в рівняннях можна винести за дужки, не змінивши логіки.

Відео: Лекція: Основи алгебри логіки - закони алгебри логіки

4. Закон де Моргана (інверсії або заперечення). Заперечення операції кон`юнкції рівносильно диз`юнкції заперечення вихідних змінних. Заперечення від диз`юнкції, в свою чергу, так само кон`юнкції заперечення тих же змінних.

5. Подвійне заперечення. Заперечення якогось висловлювання двічі дає в результаті вихідне висловлювання, тричі - його заперечення.

6. Закон ідемпотентності виглядає наступним чином для логічного додавання: x v x v x v x = x- для множення: x ^ x ^ x ^ = x.

7. Закон несуперечливий говорить: два висловлювання, якщо вони суперечливі, одночасно бути істинними не можуть.

8. Закон виключення третього. Серед двох суперечливих висловлювань одне - завжди справжнє, інше - хибне, третього не дано.

9. Закон поглинання можна записати таким чином для логічного додавання: x v (x ^ y) = x, для множення: x ^ (x v y) = x.

Відео: Інформатика. Алгебра логіки: Операції алгебри логіки. Центр онлайн-навчання «Фоксфорд»

10. Закон склеювання. Дві сусідні кон`юнкції здатні склеїтися, утворивши кон`юнкцію меншого рангу. При цьому та змінна, по якій вихідні кон`юнкції склеювалися, зникає. Приклад для логічного додавання:

(X ^ y) v (-x ^ y) = y.

Ми розглянули лише найбільш використовувані закони алгебри логіки, яких за фактом може бути багатьом більше, оскільки нерідко логічні рівняння набувають довгий і вигадливий вид, скоротити який можна, застосувавши ряд схожих законів.

Як правило, для зручності підрахунку і виявлення результатів використовуються спеціальні таблиці. Всі існуючі закони алгебри логіки, таблиця для яких має загальну структуру сіткового прямокутника, розписують, розподіляючи кожну змінну в окрему клітинку. Чим більше рівняння, то простіше з ним впоратися, використовуючи таблиці.

Поділися в соц мережах:

Увага, тільки СЬОГОДНІ!

Схожі повідомлення


Увага, тільки СЬОГОДНІ!