Ти тут

Що таке арифметика? Основна теорема арифметики. Двійкова арифметика

Що таке арифметика? Коли людство почало використовувати числа і працювати з ними? Куди йдуть корені таких повсякденних понять, як числа, дробу, віднімання, додавання і множення, які людина зробила невіддільною частиною свого життя і світогляду? Давньогрецькі уми захоплювалися такими науками, як математика, арифметика і геометрія, як прекраснейшими симфоніями людської логіки.

що таке арифметика

Можливо, арифметика не так глибока, як інші науки, але що було б з ними, забудь людина елементарну таблицю множення? Звичне нам логічне мислення, що використовують цифри, дробу і інші інструменти, нелегко давалося людям і довгий час було недоступно для наших предків. Фактично до розвитку арифметики жодна область людського знання не була по-справжньому наукової.

Арифметика - це азбука математики

Арифметика - це наука про числа, з якої будь-яка людина починає знайомство з цікавим світом математики. Як говорив М. В. Ломоносов, арифметика - це врата вченості, що відкривають нам шлях до світопізнання. А адже він має рацію, хіба пізнання світу можна відокремити від знання цифр і букв, математики й мови? Можливо, в минулі часи, але не в сучасному світі, де бурхливий розвиток науки і техніки диктує свої закони.

слово "арифметика" (Грец. "аріфмос") Грецького походження, означає "число". Вона вивчає число і все що може бути з ними пов`язано. Це світ чисел: різні дії над числами, числові правила, рішення задач, які пов`язані з множенням, відніманням і т. Д.

слово арифметика

Загальноприйнято вважати, що арифметика є початковою сходинкою математики і твердою основою для більш складних її розділів, таких, як алгебра, матаналіз, вища математика і т. Д.

Основний об`єкт арифметики

Основа арифметики - це ціле число, властивості і закономірності якого розглядаються у вищій математиці або теорії чисел. По суті, від того, наскільки вірний підхід взятий в розгляді такого невеликого блоку, як натуральне число, залежить міцність всього будинку - математики.

Відео: Основна теорема арифметики

що таке аіфметіка

Тому на питання про те, що таке арифметика, можна відповісти просто: це наука про числа. Так, про звичну сімці, дев`ятці і все це різноманітному співтоваристві. І подібно до того, як і хороших, і самих посередніх віршів не напишеш без елементарної абетки, без арифметики не вирішити навіть елементарної задачі. Ось чому все науки просунулися тільки після розвитку арифметики і математики, будучи до цього всього лише набором припущень.

Арифметика - наука-фантом

Що таке арифметика - натуральна наука чи фантом? Насправді, як міркували давньогрецькі філософи, ні чисел, ні фігур в реальності не існує. Це всього лише фантом, який створюється в людському мисленні при розгляданні навколишнього середовища з її процесами. Справді, що таке число? Ніде навколо ми не бачимо нічого подібного, що можна було б назвати числом, швидше, число - це спосіб людського розуму вивчати світ. А може бути, це вивчення нас самих зсередини? Про це сперечаються філософи багато століть поспіль, тому дати вичерпну відповідь ми не беремося. Так чи інакше, арифметиці вдалося настільки міцно зайняти свої позиції, що в сучасному світі ніхто не може вважатися соціально адаптованою без знання її основ.

Як з`явилося натуральне число

Звичайно, основний об`єкт, яким оперує арифметика, - натуральне число, таке, як 1, 2, 3, 4, …, 152 ... і т.д. Арифметика натуральних чисел є результатом рахунки звичайних предметів, наприклад, корів на лузі. Все-таки визначення "багато" або "мало" колись перестало влаштовувати людей, і довелося винаходити більш досконалі техніки рахунки.

арифметика натуральних чисел

Але справжній прорив стався, коли людська думка дійшла до того, що можна одним і тим же числом «два» позначити і 2 кілограми, і 2 цегли, і 2 деталі. Справа в тому, що потрібно абстрагуватися від форм, властивостей і сенсу предметів, тоді можна виробляти деякі дії з цими предметами у вигляді натуральних чисел. Так народилася арифметика чисел, яка далі розвивалася і ширилася, займаючи все більші позиції в житті суспільства.

Такі поглиблені поняття числа, як нуль і негативне число, дробу, позначення чисел цифрами та іншими способами, мають багатющу й надзвичайно цікаву історію розвитку.

Арифметика і практичні єгиптяни

Два найдавніших супутника людини в дослідженні навколишнього світу та вирішення побутових завдань - це арифметика і геометрія.

Відео: Основна теорема арифметики, АВС гіпотеза і інші гіпотези теорії чисел

історія арифметики

Вважається, що історія арифметики бере свій початок на Стародавньому Сході: в Індії, Єгипті, Вавилоні та Китаї. Так, папірус Ринда єгипетського походження (названий так, оскільки належав однойменному власнику), що датується XX в. до н.е, крім інших цінних даних містить розкладання однієї дробу на суму дробів з різними знаменниками і чисельником, рівним одиниці.

Наприклад: 2/73 = 1/60 + 1/219 + 1/292 + 1/365.

Але в чому сенс такого складного розкладу? Справа в тому, що єгипетський підхід не терпів абстрагованих роздумів про числах, навпаки, обчислення проводилися тільки з практичною метою. Тобто єгиптянин стане займатися такою справою, як розрахунки, виключно для того, щоб побудувати гробницю, наприклад. Потрібно було вирахувати довжину ребра споруди, і це змушувало сідати людини за папірус. Як видно, єгипетський прогрес в розрахунках був викликаний, швидше за масовим, будівництвом, ніж любов`ю до науки.

З цієї причини розрахунки, знайдені на папірусах, не можна назвати роздумами на тему дробів. Швидше за все, це практична заготовка, яка допомагала в подальшому вирішувати завдання з дробами. Стародавні єгиптяни, які не знали таблиці множення, виробляли досить довгі обчислення, розкладені на безліч підзадач. Можливо, це одна з таких підзадач. Неважко помітити, що розрахунки з такими заготовками вельми трудомісткі і малоперспективні. Може бути, з цієї причини ми не бачимо великого внеску Стародавнього Єгипту в розвиток математики.

Стародавня Греція і філософська арифметика

Багато знань Стародавнього Сходу були успішно освоєні древніми греками, відомими любителями абстрактних, абстрактних і філософських роздумів. Практика їх цікавила не менше, але кращих теоретиків і мислителів знайти складно. Це пішло на користь науці, оскільки в арифметику неможливо заглибитися, що не розірвавши її з реальністю. Звичайно, можна множити 10 корів і 100 літрів молока, але далеко просунутися не вдасться.

математика арифметика

Мислячі глибоко греки залишили значний слід в історії, і їхні праці дійшли до нас:

  • Евклід і «Начала».
  • Піфагор.
  • Архімед.
  • Ератосфен.
  • Зенон.
  • Анаксагор.

І, звичайно, здатні перетворювати все в філософію греки, а особливо продовжувачі справи Піфагора, настільки були захоплені числами, що вважали їх таїнством гармонії світу. Числа настільки були вивчені і досліджені, що деяким з них і їх парам приписували особливі властивості. наприклад:

  • Вчинені числа - ті, які дорівнюють сумі всіх своїх дільників, крім самого числа (6 = 1 + 2 + 3).
  • Дружні числа - це такі числа, одне з яких дорівнює сумі всіх дільників другого, і навпаки (піфагорійці знали тільки одну таку пару: 220 і 284).


основна теорема арифметики

Греки, які вважали, що науку потрібно любити, а не бути з нею заради вигоди, досягли великих успіхів, досліджуючи, граючи і складаючи числа. Потрібно відзначити, що не всі їх дослідження знайшли широке застосування, деякі з них залишилися лише "для краси".

Східні мислителі Середньовіччя

Точно так само і в середні віки арифметика своїм розвитком зобов`язана східним сучасникам. Індійці передали нам цифри, які ми активно використовуємо, таке поняття як "нуль", І позиційний варіант системи обчислення, звичний сучасному сприйняттю. Від Аль-каші, який в 15 столітті працював в Самарканді, ми успадкували десяткові дроби, без яких важко уявити сучасну арифметику.

Багато в чому знайомство Європи з досягненнями Сходу стало можливо завдяки праці італійського вченого Леонардо Фібоначчі, який написав твір "книга абака", Що знайомить зі східними нововведеннями. Воно стало наріжним каменем розвитку алгебри і арифметики, дослідницької та наукової діяльності в Європі.

Російська арифметика

І, нарешті, арифметика, що знайшла своє місце і укорінена в Європі, стала поширюватися і на російські землі. Перша російська арифметика вийшла в 1703 році - це була книга про арифметику Леонтія Магницького. Довгий час вона залишалася єдиним навчальним посібником з математики. Вона містить початкові моменти алгебри і геометрії. Цифри, які використовував у прикладах перший в Росії підручник арифметики, арабські. Хоча арабські цифри зустрічалися і раніше, на гравюрах, що датуються 17 століттям.

перший в Росії підручник арифметики

Сама книга прикрашена зображеннями Архімеда і Піфагора, а на першому аркуші - образ арифметики у вигляді жінки. Вона сидить на престолі, під нею написано на івриті слово, що позначає ім`я Бога, а на щаблях, які ведуть до престолу, написані слова «поділ», «множення», «складання» і т. Д. Можна тільки уявити, яке значення зраджували таким істин, які зараз вважаються буденним явищем.

Підручник з 600 сторінок описує як основи на зразок таблиці додавання і множення, так і додатки до навігаційних наук.

Тож не дивно, що автор вибрав зображення грецьких мислителів для своєї книги, адже він і сам був полонений красою арифметики, кажучи: «Арифметика є чіслітельніца, є мистецтво чесне, незавістное… ». Такий підхід до арифметики цілком обгрунтований, адже саме її повсюдне впровадження можна вважати початком бурхливого розвитку наукової думки в Росії і загальної освіти.

Непрості прості числа

Просте число - це таке натуральне число, яке має тільки 2 позитивних подільника: 1 і саме себе. Всі інші числа, не рахуючи 1, називають складовими. Приклади простих чисел: 2, 3, 5, 7, 11, і всі інші, які не мають інших дільників, крім числа 1 і себе самого.

Що ж стосується числа 1, то воно на особливому рахунку - існує домовленість, що його потрібно вважати ні простим, ні складеним. Просте на перший погляд просте число таїть безліч нерозгаданих таємниць всередині себе.

Теорема Евкліда говорить, що простих чисел нескінченна безліч, а Ератосфен придумав спеціальний арифметичне «решето», яке відсіває непрості числа, залишаючи тільки прості.



арифметика чисел

Її суть в тому щоб підкреслювати перший невикреслене число, а в подальшому викреслювати ті, які йому кратні. Багаторазово повторюємо цю процедуру - і отримуємо таблицю простих чисел.

Основна теорема арифметики

Серед спостережень про прості числа потрібно особливим чином згадати основну теорему арифметики.

Основна теорема арифметики говорить, що будь-яке ціле число, більше 1, або є простим, або його можна розкласти на твір простих чисел з точністю до порядку проходження сомножителей, причому єдиним чином.

основна теорема арифметики

Основна теорема арифметики доводиться досить громіздко, та й розуміння її вже не схоже на найпростіші основи.

На перший погляд прості числа - елементарне поняття, проте це не так. Фізика також колись вважала атом елементарним, поки не знайшла всередині нього цілий всесвіт. Простих чисел присвячений прекрасний розповідь математика Дона Цагіра «Перші п`ятдесят мільйонів простих чисел».

Від «трьох яблучок» до дедуктивних законів

Що справді можна назвати армованим фундаментом всієї науки - це закони арифметики. Ще в дитинстві все стикаються з арифметикою, вивчаючи кількість ніжок і ручок у ляльок, кількість кубиків, яблучок і т. Д. Так ми вивчаємо арифметику, яка далі переходить в більш складні правила.

вивчаємо арифметику

Все наше життя знайомить нас з правилами арифметики, які стали для простої людини найбільш корисними з усього, що дає наука. Вивчення чисел - це "арифметика-малятко", Яка знайомить людини зі світом чисел у вигляді цифр ще в ранньому дитинстві.

Відео: 2 - Основна теорема арифметики

Вища арифметика - дедуктивна наука, яка вивчає закони арифметики. Більшість з них нам відомо, хоча, можливо, ми і не знаємо їх точних формулювань.

Закон додавання і множення

Два будь-яких натуральних числа a і b можуть бути виражені у вигляді суми a + b, яка також буде числом натуральним. Відносно складання діють наступні закони:

  • комутативними, який говорить, що від перестановки доданків місцями сума не змінюється, або a + b = b + a.
  • асоціативний, який говорить, що сума не залежить від способу угруповання доданків місцями, або a + (b + c) = (a + b) + c.

закони арифметики

Правила арифметики, такі, як складання, - одні з елементарних, але їх використовують все науки, не кажучи вже про повсякденне життя.

Два будь-яких натуральних числа a і b можуть бути виражені в творі a * b або a * b, яке також є числом натуральним. До твору застосовні ті ж комутативність і асоціативні закони, що і до складання:

  • a * b = b * a;
  • a * (b * c) = (a * b) * c.

правила арифметики

Цікаво, що існує закон, який об`єднує додавання і множення, званий також розподільним, або дистрибутивним законом:

a (b + c) = ab + ac

Цей закон фактично вчить нас працювати з дужками, розкриваючи їх, тим самим ми можемо працювати вже з більш складними формулами. Це саме ті закони, які будуть вести нас по химерного і непростому світі алгебри.

Закон арифметичного порядку

Закон порядку людська логіка використовує кожен день, звіряючи годинник і вважаючи купюри. І, тим не менше, і його потрібно оформити у вигляді конкретних формулювань.

Якщо ми маємо два натуральних числа a і b, то можливі наступні варіанти:

  • a одно b, або a = b;
  • a менше b, або a lt; b;
  • a більше b, або a gt; b.

З трьох варіантів справедливим може бути тільки один. Основний закон, який керує порядком, каже: якщо a lt; b і b lt; c, то alt; c.

Існують також і закони, що зв`язують порядок з діями множення і складання: якщо alt; b, то a + c lt; b + c і aclt; bc.

Закони арифметики вчать нас працювати з числами, знаками і дужками, перетворюючи все в струнку симфонію чисел.

Позиційні і непозиційної системи обчислення

Можна сказати, що числа - це математичний мову, від зручності якого залежить багато. Існує безліч систем обчислення, які, як і алфавіти різних мов, відрізняються між собою.

російська арифметика

Розглянемо системи числення з точки зору впливу позиції на кількісне значення цифри на цій позиції. Так, наприклад, римська система є непозиционной, де кожне число кодується певним набором спеціальних символів: I / V / X / L / C / D / M. Вони рівні, відповідно, числам 1/5/10/50/100/500 / 1000. У такій системі цифра не змінює свого кількісного визначення в залежності від того, на який вона стоїть позиції: першої, другої і т. Д. Щоб отримати інші числа, потрібно скласти базові. наприклад:

  • DCC = 700.
  • CCM = 800.

Більш звична для нас система зчислення з використанням арабських цифр є позиційною. У такій системі розряд числа визначає кількість цифр, наприклад, Трехразрядное числа: 333, 567 і т.д. Вага будь-якого розряду залежить від позиції, на якій знаходиться та чи інша цифра, наприклад цифра 8 на другій позиції має значення 80. Це характерно для десяткової системи, існують і інші позиційні системи, наприклад двоичная.

Двійкова арифметика

Нам знайома десяткова система числення, що складається з однорозрядних чисел і багаторозрядних. Цифра зліва у многоразрядного числа в десять разів більше за значимістю тієї, яка справа. Так, ми звикли читати 2, 17, 467 і т. Д. Зовсім інша логіка і підхід у розділу, який носить назву "двоичная арифметика". Це й не дивно, адже двоичная арифметика створена не для людської логіки, а для комп`ютерної. Якщо арифметика чисел сталася від рахунку предметів, що в подальшому абстрагувалося від властивостей предмета до "голою" арифметиці, то з комп`ютером таке не пройде. Щоб можна було поділитися своїми знаннями з ЕОМ, людині довелося винайти таку модель обчислення.

двоичная арифметика

Двійкова арифметика працює з двійковим алфавітом, який складається всього з 0 і 1. А використання цього алфавіту називається двійковою системою числення.

Відмінність двійковій арифметики від десяткової в тому, що значимість позиції зліва більше не в 10, а в 2 рази. Двійкові числа мають вигляд 111, 1001 і т. Д. Як розуміти такі числа? Отже, розглянемо число 1100

  1. Перша цифра зліва - 1 * 8 = 8, пам`ятаючи про те, що четверта цифра, а значить, її потрібно помножити на 2, отримуємо позицію 8.
  2. Друга цифра 1 * 4 = 4 (позиція 4).
  3. Третя цифра 0 * 2 = 0 (позиція 2).
  4. Четверта цифра 0 * 1 = 0 (позиція 1).
  5. Отже, наше число 1100 = 8 + 4 + 0 + 0 = 12.

Тобто при переході на новий розряд зліва його значимість в двійковій системі множиться на 2, а в десяткового - на 10. Така система має один мінус: це занадто велике зростання розрядів, які необхідні для запису чисел. Приклади представлення десяткових чисел у вигляді двочіних можна подивитися в таблиці нижче.

Десяткові числа в двійковому вигляді зображені нижче.

двоичная арифметика

Використовуються також і восьмерична, і шістнадцяткова системи числення.

Ця загадкова арифметика

Що таке арифметика, «двічі два» або незвідані таємниці чисел? Як бачимо, арифметика, може, і здається на перший погляд простий, але її неочевидна легкість оманлива. Її можна вивчати і дітям разом з тітонькою Совою з мультика «Арифметика-малятко», а можна зануритися в глибоко наукові дослідження мало не філософського порядку. В історії вона пройшла шлях від рахунку предметів до поклоніння красі чисел. Одне тільки точно відомо: з встановленням основних постулатів арифметики вся наука може спиратися на її міцне плече.

Поділися в соц мережах:

Увага, тільки СЬОГОДНІ!

Схожі повідомлення


Увага, тільки СЬОГОДНІ!